If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29y^2-50y=0
a = 29; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·29·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*29}=\frac{0}{58} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*29}=\frac{100}{58} =1+21/29 $
| N-6=7.5n | | d+6/−2=5. | | 7^x+1=6x | | 3(2x-4)=-2x+3+8x | | 8+h/10=1 | | 40=8c+16 | | 5x-1-2x=-46 | | 17=3t—13 | | 1/3y+5/4=1/10 | | -7+4x=4 | | 6a^2+48a-36=0 | | 4(5n-7)=1n+2 | | (5x-8)+(3x+32)=150 | | 5•-11+6(y)=-37 | | 0=12-12s | | 3x=x=13 | | 85=14-3r | | 1/3a+11/4=39/20-a | | 3/4a+11/4=39/20-a | | 4.5w=25/3 | | 10×-5=7x+14 | | m/4+50=51 | | 59=n+(n-3) | | x/9-8=-13 | | 0.5-0.9(4-x)=5.5 | | 7x-3(9-x)=10 | | 4(3x–2)=2x–5 | | x*x+9x-10=0 | | 16x+8=6x+24 | | 11x+5=2x+20 | | 6(1-7x)=75 | | 12x2-61x+70=0 |